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•http://safetycampus.files.wordpress.com/2008/1

2/forklift_accident_with_bomb.jpg

• Need to assess the Probability 
of Bolt Failure under tensile load

• ADAGIO implicit nonlinear 
dynamics code used for 
simulation

• Discrete materials models 
and thermal behavior 

• Performance threshold: 

P(bolt failure) = 10-6

• Performance margin: 

10-6 – P(max observed strain –

critical strain > 0)

• Uncertainties: material model 

parameters, critical strain

Motivating Example:  Weapons safety
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Motivating Example:  System of Systems

• Large–scale models are decomposed into constitutive system models

• Black-Box model of actor behavior, independent subsystems making 

choices based on inputs from others

• Involves mix of discrete choices and continuous design parameters

Planning Electrical 

Power
Transportation 

Network Water Resource 

Mngmt
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Why do we need surrogates?

• Optimization and UQ methods (both aleatory and epistemic) are 

computationally expensive

• People want to perform a limited number of “true” simulations, 

construct surrogate, and perform analysis on the surrogate

– Engineering analysis:  discrete choices for design options, physics “knobs” 
in codes

– Logistics, SoS applications

• Most surrogate models assume continuous inputs, and rely on 

some assumptions about how the output varies as the input 

varies

– With discrete variables, this no longer holds (especially if the variables are 
categorical vs. ordinal) 

• E.g., changing from 3 depots to 4 depots may result in fundamentally 
different behavior of a logistics system

• Model A vs. Model B vs. Model C may result in very different 
behaviors
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Possible Options for 
Modeling Discrete Variables (1)

• Categorical Regression

– Uses indicator functions for various levels of categorical variables

Y=0 + 1X1 + 2X2 where X1 is continuous, X2 is binary

 Y=0 + 1X1 for X2=0, Y=0 + 1X1 + 2 for X2=1

 Results in 2 different models, both with slope 1 but with intercepts 
0 and (0 + 2)

– Computationally expensive because each combination of discrete 
variables has a separate regression function

• Large numbers of discrete variables and for large numbers of “levels” 
per variable => combinatorial explosion

• Need enough samples over the continuous variables for EACH 
combination of discrete levels to obtain an accurate regression 
function
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Possible Options for 
Modeling Discrete Variables (2)

• Gaussian Process Models

– Responses at points close together in input space are highly 
correlated, responses at points far away are not

– Can provide an estimate of the prediction uncertainty which can be 
used in optimization

– Explicit Representation of Categorical Variables in GP
• Qian and Wu, 2008

• Recommend isotropic correlation structure 

– Treed Gaussian Process

• TGP papers:  Gramacy and Lee, 2008;  Gramacy and Taddy, 2009

• Allow partitions on categorical variables

• Surrogate model made at “leaf” nodes is formed only on continuous 
variables 

• Options:  Bayesian GP with Linear Limiting Model
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Possible Options for 
Modeling Discrete Variables (3)

• Adaptive COmponent Selection and Smoothing Operator 
(ACOSSO)

– Univariate smoothing spline estimate

– ACOSSO Estimate:  f is an additive function  
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Testbed

• Need a testbed for evaluation of these various methods

• Desired characteristics of a testbed:

– Fast running evaluations

– Easy to compile, cross-platform compability

– Extendable

– File input/output

– Scalability of function in terms of number discrete variables 
and/or levels per variable

– Ability to control problem complexity
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Test Function 1
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Test Function 2
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Test Functions 3
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• Simple, analytic function

• We initially started with four variables: 

– 2 continuous on [0,2]

– 2 discrete with value [0,1,2]

• Easy to scale up in terms of number of levels

– Scaled up the number of levels to five [-1,0,1,2,3].

• Easy to scale up in terms of number of discrete variables

– Scaled up to five discrete variables, with three and five levels

• Can also explore symmetry and function separability
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Polynomial Generator

• Generates a random polynomial with degree 

between two and six, and number of variables 

between one and fifteen

• Uses a polynomial generating algorithm which 

uses a system of linear equations to solve for the 

random coefficients, described in: 

– McDaniel, W. R. and B. E. Ankenman, “A Response Surface 
Test Bed.” Qual. Reliab. Engng. Int. 2000; 16: 363–372

• Can control the degree of nonlinearity, range of 

polynomial values, various features, etc.
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Evaluation Process/Scripts

• For each surrogate type, looked at performance over a 

number of build points (LHS sample points). 

• Used MSE (mean squared error) as a measure of 

goodness.  Calculated MSE over a grid (where the grid 

was dimensioned based on the number of inputs).

• Categorical Regression run in DAKOTA

– Generate a separate continuous surrogate for each 
combination of discrete variable values/levels

• TGP and ACOSSO run in R
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Results
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Results:  Test Function 1
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Results:  Test Function 2
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Results:  Test Function 2

• The TGP does not fully 

partition over all of the 

discrete variables

• Our premise was that it 

would be sufficient to create 

surrogates over partitions 

which aggregrate the 

discrete variables (e.g. have 

one GP surrogate based on 

X1 at levels 1 and 2, and 

another with X1 at levels 3-

5).  

• It may be that this is too 

coarse, resulting in 

inaccurate surrogates.
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Results:  Test Function 3
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Results:  Test Function 3, TGP

• SCALING UP DISCRETE LEVELS:  FROM 3 to 5

• SCALING UP DISCRETE VARIABLES:  FROM 2 to 5

• SCALING UP BOTH

• MSE decreases more quickly for more discrete variables vs. 

an increased number of discrete level per variable

Test Function 3

Discrete 2 [0-1-2] 2 [-1-0-1-2-3] 5 [0-1-2] 5 [-1-0-1-2-3]

Continuous 2 [0,2] 2 [0,2] 2 [0,2] 2 [0,2]

50 0.7217199 119.75 1.38 319.22

100 0.03391995 57.15 0.79 300.08

150 0.01617074 25.94 0.87 272.76

200 0.00631333 25.26 0.72 265.96

300 4.45E-05 17.91 0.52 231.41

500 1.74E-06 1.27 0.32 223.68

SYMMETRIC - TGP
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Results:  Test Function 3, ACOSSO

• SCALING UP DISCRETE LEVELS:  FROM 3 to 5

• SCALING UP DISCRETE VARIABLES:  FROM 2 to 5

• SCALING UP BOTH

• MSE decreases more quickly for more discrete variables vs. 

an increased number of discrete level per variable

Test Function 3

Discrete 2 [0-1-2] 2 [-1-0-1-2-3] 5 [0-1-2] 5 [-1-0-1-2-3]

Continuous 2 [0,2] 2 [0,2] 2 [0,2] 2 [0,2]

50 1.20E-04 8.15E-04 2.24E-04 2.56E-01

100 9.31E-06 1.55E-03 6.27E-06 4.06E-06

150 1.50E-06 1.34E-03 2.01E-06 2.56E-04

200 1.75E-07 3.20E-06 6.97E-07 1.99E-03

300 3.17E-07 4.68E-05 1.31E-07 5.24E-05

500 7.69E-08 3.08E-04 8.56E-08 2.14E-05

SYMMETRIC - ACOSSO
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Results:  Test Function 3, asymmetric case

• SCALING UP DISCRETE LEVELS:  FROM 3 to 5

• SCALING UP DISCRETE VARIABLES:  FROM 2 to 5

• SCALING UP BOTH, but function is now ASYMMETRIC

• Asymmetry greatly increases the difficulty of the emulation 

for TGP, since symmetry helps by allowing different discrete 

levels to be binned into the same bin

Test Function 3

Discrete 2 [1-2-3] 2 [1-2-3-4-5] 2 [1-2-3] 2 [1-2-3-4-5]

Continuous 2 [0,2] 2 [0,2] 2 [0,2] 2 [0,2]

50 53.53 11843.35 3.67E-03 0.34

100 0.62 2444.52 1.96E-03 0.18

150 0.26 3402.73 3.27E-04 0.12

200 0.15 4494.97 9.94E-04 0.07

300 0.02 2382.42 3.55E-06 0.03

500 0.01 0.39 5.78E-04 0.06

ACOSSOTGP
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Results:  Test Function Polynomial

• 2nd order polynomial with four variables (2 discrete and 2 

continuous)

• 2 discrete variables at levels [20,50,80]

• Continuous variables between 0 and 100
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Results:  Test Function Polynomial

Problem Complexity:  going from a 2nd order polynomial with 14 

terms to a 3rd order polynomial with 24 terms to a 4th order 

polynomial with 19 terms

Finer discretization of discrete variables:  10 levels instead of 3

TGP ACOSSO TGP ACOSSO TGP ACOSSO

Discrete 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels]

Continuous 2[0,100] 2[0,100] 2[0,100] 2[0,100] 2[0,100] 2[0,100]

50 28.88 12.24 25.16 9.12 10.07 29.98

100 28.58 0.46 25.00 4.92 10.25 5.14

150 27.83 0.15 21.94 2.31 13.16 6.03

200 21.80 0.05 16.31 1.91 9.99 5.03

250 24.92 0.06 11.58 2.37 10.40 5.16

300 22.78 0.03 9.49 1.77 8.76 5.20

Test Function Poly 2 Test Function Poly 3 Test Function Poly 4
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Observations

• Categorical Regression performed very well on 

problems with small numbers of discrete 

variables/levels

• ACOSSO performs very well. 

• TGP performance is mixed

– Functions 1, 2:  performs well when it seems to get enough 
function evaluations (few hundred)

• Ability to identify the splits

• Not sufficient to aggregate across discrete levels

– Functions 3, poly:  performs poorly (i.e, high MSE)
• There are adaptive methods, such as adaptively adding points to the 

GP based on expected improvement.



25

Observations

• Scalability

– ACOSSO seems the most scalable, TGP suffers from too large an 
aggregation across discrete levels, and categorical regression is 
not scalable

– Is there a difference between scalability across discrete variables 
vs. number of levels?   Test function three suggests there might be 

• Further work: 

– Amount of interactions between variables

– Range/nonlinearity of function (polynomial testbed will allow)

– Improving efficiency of TGP and ACOSSO implementations



26

References

1. R.B. Gramacy and H. K. H. Lee.   “Bayesian treed Gaussian process models with an application to 
computer modeling.”  Journal of the American Statistical Association, 103:1119-1130, 2008.

2. R. B. Gramacy and H. K. H. Lee. “Gaussian processes and limiting linear models.”   Computational 
Statistics and Data Analysis, 53:123-136, 2008. 

3. R. B. Gramacy and M. Taddy.   “Categorical inputs, sensitivity analysis, optimization and 
importance tempering with tgp version 2, an R package for treed Gaussian process models.”  R 
manual available at http://cran.r-project.org/, 2009.

4. McDaniel, W. R. and B. E. Ankenman, “A Response Surface Test Bed.” Qual. Reliab. Engng. Int. 
2000; 16: 363–372

5. P. Qian, H. Wu, and C.F.J. Wu.   “Gaussian process models for computer experiments with 
qualitative and quantitative factors. “  Technometrics, 50(3):383–396, 2008.

6. B. J. Reich, C. B. Storlie, and H.D. Bondell.  “Variable selection in Bayesian smoothing spline 
ANOVA models: Application to deterministic computer codes.” Technometrics, 51, 110-120, 
2009.

7. C.B. Storlie and J.C. Helton.  “Multiple predictor smoothing methods for sensitivity analysis: 
Description of techniques.”  Reliability Engineering and System Safety, 93(1):28–54, 2008.

8. C.B. Storlie, L.P. Swiler, J.C. Helton, and C.J. Sallaberry. “Implementation and evaluation of 
nonparametric regression procedures for sensitivity analysis of computationally demanding 
models.”  Reliability Engineering and System Safety, 94 (2009) 1735–1763

9. C.B. Storlie, J.C. Helton,, B. J. Reich, and L.P. Swiler. “Analysis of Computationally Demanding 
Models with Qualitative and Quantitative Inputs.”  Draft manuscript.

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/


27

Backup Slides



28

Why do we need surrogates?

• Optimization and UQ methods (both aleatory and epistemic) are 
computationally expensive

• People want to perform a limited number of “true” simulations, 
construct surrogate, and perform analysis on the surrogate

– Engineering analysis:  discrete choices for design options, physics “knobs” 
in codes

– Logistics, SoS applications

• There are a number of surrogates for continuous variables

– Parametric regression (e.g. linear, quadratic, rank)

– Nonparametric regression (e.g. local regression, ridge regression, etc). 

– Splines

– Neural Networks

– Radial Basis Functions

– Gaussian Processes

– Stochastic expansion methods (e.g. polynomial chaos, stochastic 
collocation)
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Why are discrete variables hard 
to model with surrogates?

• Most surrogate models assume continuous 
inputs, and rely on some assumptions about how 
the output varies as the input varies

– In linear regression, the output is a linear function of the 
inputs

– In Gaussian processes, the assumption is that outputs of 
input points “close together” will also be close together 
(governed by a correlation structure)

– With discrete variables, this no longer holds (especially if the 
variables are categorical vs. ordinal) 

• E.g., changing from 3 depots to 4 depots may result in 
fundamentally different behavior of a logistics system

• Model A vs. Model B vs. Model C may result in very different 
behaviors
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Possible Options for 
Modeling Discrete Variables (2)

• Gaussian Process Models

– Responses at points close together in input space are highly correlated, 
responses at points far away are not

– Requires significant computational effort in determining parameters 
governing the covariance function 

– Can provide an estimate of the prediction uncertainty which can be used in 
optimization

• Explicit Representation of Categorical Variables in GP

– Qian and Wu, 2007

– Recommend isotropic correlation structure:  

• Treed Gaussian Process

– TGP R papers, Gramacy 2009, Gramacy and Taddy, 2010

– Allow partitions on categorical variables

– Surrogate model made at “leaf” nodes is formed only on continuous 
variables 

– Options:  Bayesian GP with Linear Limiting Model
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Testbed

• We developed a simple, 

extensible testbed, written 

in C++

• It currently has four test 

functions plus a random 

polynomial generator

• Fast running, uses 

SmartArrays

• Class documentation 

provided via html pages:
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Testbed

• Execution is simple:

tf –i input_file –o output_file –f fn#

• Example

tf –i input_values –o output_values –f 1

input-values: 

# Function 1 input 

X1=1

X2 = 0.42

output_values

2.50737536

Numterms: 14

.......... Pure terms ..........

73.9862

-0.279989 {1,1}

0.000350121 {1,2}

-0.136502 {2,1}

2.51957e-05 {2,2}

-0.242437 {3,1}

-0.0236206 {4,1}

-0.00130055 {4,2}

.......... Mixed second order terms ....

0.000311869 {1,1} {2,1}

0.00217202 {1,1} {3,1}

-8.07668e-05 {1,1} {4,1}

0.00212612 {2,1} {3,1}

0.00171962 {2,1} {4,1}

0.00018751 {3,1} {4,1}
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Testbed

• Need a testbed for evaluation of these various methods

• Desired characteristics of a testbed:

– Fast running evaluations

– Easy to compile, cross-platform compability

– Extendable

– File input/output

– Scalability of function in terms of number discrete variables 
and/or levels per variable

• Existing optimization testbeds not exactly appropriate

– Many tests either all continuous (e.g. to test quadratic 
programming, linear programming algorithms) or all integer  (to 
test integer programming)

– BARON does have MINLP problems, but the interesting part of the 
problem is constraints:  we only need objective function
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Results:  Test Function Polynomial

• Scalability:  going from 3 discrete levels to 10 discrete levels

• Problem Complexity:  going from a 2nd order polynomial with 

14 terms to a 3rd order polynomial with 24 terms

Test Function Poly 2 TGP TGP ACOSSO ACOSSO

Discrete 2 [20,50,80] 2 [ten levels] 2 [20,50,80] 2 [ten levels]

Continuous 2[0,100] 2[0,100] 2[0,100] 2[0,100]

50 9.19 27.14 0.36 10.79

100 8.34 25.61 0.05 0.22

150 0.12 25.04 0.05 0.18

200 0.01 24.26 0.03 0.16

300 0.01 18.04 0.04 0.11

500 0.00 10.81 0.03 0.09

Test Function Poly 3 TGP TGP ACOSSO ACOSSO

Discrete 2 [20,50,80] 2 [ten levels] 2 [20,50,80] 2 [ten levels]

Continuous 2[0,100] 2[0,100] 2[0,100] 2[0,100]

50 11.30 24.83 2.52 7.95

100 4.30 24.68 0.67 5.13

150 2.46 23.21 0.38 2.70

200 0.98 20.79 0.42 57.71

250 0.89 9.68 0.37 1.25

300 1.21 9.49 0.45 1.33


